RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2018

THIRD YEAR [BATCH 2016-19]

MATHEMATICS [Honours]

Date : 17/12/2018 Time : 11 am – 3 pm

Paper : V

Full Marks : 100

[5×10]

[5+2+3]

[5+5]

[Use a separate Answer Book for each Group]

<u>Group – A</u>

Answer any five questions from Question Nos. 1 to 8 :

- 1. a) Prove that A_4 has no subgroup of order 6.
 - b) Let H be a normal subgroup of G and o(H) = 2. Prove that $H \subseteq Z(G)$.
 - c) Suppose G is a finite cyclic group of order n. Prove that Aut G is a group of order $\emptyset(n)$, where \emptyset stands for Euler's Phi function. [3+2+5]
- 2. a) State Cayley's theorem.
 - b) Show that there are only two noncommutative groups of order 8 upto isomorphism.
 - c) Show that the additive group $(\mathbb{Z}, +)$ cannot be expressed as an internal direct product of two nontrivial subgroups. [2+5+3]
- 3 a) Establish class equation for a finite group. Write class equation for $S_{3.}$
 - b) Find the number of elements of order 3 in a noncyclic group of order 21.
 - c) Write true or false with proper justification of the following statement : Any epimorphism of (ℤ, +) onto (ℤ, +) is an isomorphism.
- 4. a) Suppose G is a group of order 96. Show that G has a normal subgroup of order 16 or 32.
 - b) Suppose G is a group of order 90. Show that G is not simple.
- 5. a) Give an example of a field F and subfields K_1 , K_2 such that K_1UK_2 is not a subfield of F.
 - b) If X is an infinite set and $\mathcal{A} = \{A \in \mathcal{P}(X) : A \text{ is finite}\}$ then show that $(\mathcal{P}(X), \Delta, \cap)$ is a ring with identity and \mathcal{A} is a subring of $\mathcal{P}(X)$ without identity, here $\mathcal{P}(X)$ denotes the power set of X.
 - c) Show that $\mathbb{Z}\left[\sqrt{3}\right]$ and $\mathbb{Z}\left[\sqrt{5}\right]$ are not isomorphic as rings. [2+4+4]
- 6. a) (i) Find the characteristic of the ring $\mathbb{Z}_4[x]$, the polynomial ring over \mathbb{Z}_4 .

(ii) In $\mathbb{Z}_8[x]$, show that $\overline{4}x + \overline{3}$ is a unit.

- b) Show that every Euclidean domain is a P.I.D.
- c) If a and b are two elements in an Euclidean Domain R with valuation 'd' and b is invertible then prove that d (ab) = d (a) [(2+2)+4+2]
- 7. a) Prove that 3 is irreducible but not prime in the integral domain $\mathbb{Z}[i\sqrt{5}] = \{a + bi\sqrt{5} : a, b \in \mathbb{Z}\}$.
 - b) Let R be an Integral Domain in which

 (i) Every a ∈ R -{0} which is not a unit can be expressed as a product of irreducible elements.
 (ii) Every irreducible element is prime.

 Prove that R is a U.F.D.

- 8. a) Prove that if R is a commutative ring with 1, then R contains a maximal ideal.
 - b) Show that the ideal $\langle x \rangle$ is prime in $\mathbb{Z}[x]$.
 - c) Prove that the ideal I ={ $(5x, y) : x, y \in \mathbb{Z}$ } is a maximal ideal in $\mathbb{Z} \times \mathbb{Z}$. [5+2+3]

[6×5]

[5]

[5]

[2+3]

[5]

[5]

<u>Group – B</u>

Answer any six questions from <u>Question Nos. 9 to 17</u>:

9. If $\lim_{(x,y)\to(a,b)} f(x,y) = L$, and if the one-dimensional limit $\lim_{y\to b} f(x,y)$ exists, prove that $\lim_{y\to b} \left[\lim_{y\to b} f(x,y)\right] = L$.

$$\lim_{\mathbf{x}\to\mathbf{a}}\left[\lim_{\mathbf{y}\to\mathbf{b}}\mathbf{f}(\mathbf{x},\mathbf{y})\right]=L.$$

10. a) Consider the function $f(x, y) = \frac{\sin x + \sin 2y}{\tan 2x + \tan y}$. Show that for this function repeated limits exist

at (0,0) but double limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

- b) Give an example of a function for which the double limit exists at a point but repeated limits do not exist.
- 11. Let f be a function from \mathbb{R}^n into \mathbb{R}^m , and $f = (f_1, f_2, \dots, f_m)$. Prove that f is differentiable at a point c iff each f_i is differentiable at c. [5]

12. Let f: S $\rightarrow \mathbb{R}$, where S is an open set in \mathbb{R}^2 , be a function. Let $(a,b) \in S$ & both $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are differentiable at (a,b). Show that $f_{xy}(a,b)=f_{yx}(a,b)$.

- 13. Let (x,y) approach (0,0) along y = -x. Find $\lim \frac{\sin xy + xe^x y}{x\cos y + \sin 2y}$ using Taylor's theorem. [5]
- 14. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function. By considering the function $g(t) := f[ty_1 + (1 - t)x_1, y_2] + f[x_1, ty_2 + (1 - t)x_2]$ prove that $f(y_1, y_2) - f(x_1, x_2) = (y_1 - x_1)D_1 f(z_1, y_2) + (y_2 - x_2)D_2 f(x_1, z_2)$, where z_i lies in between x_i and y_i . [5]
- 15. State inverse function theorem and implicit function theorem in general.
- 16. Verify that the function $f(x,y,z) = \frac{1}{4}(x^4 + y^4 + z^4) xyz$ has a stationary point at (1,1,1) and determine the nature of this stationary point by computing the eigenvalues of its Hessian matrix.
- 17. Use Lagrange's method to find the shortest distance from the point (0,3) to the parabola $x^2 4y = 0$.

Answer any four questions from Question Nos. 18 to 23 :	[4×5]
18. Show that a function of bounded variation is bounded but the converse is not true.	[3+2]
 Prove that a function satisfying Lipchitz condition on [a,b] is a function of bounded variation on [a,b]. Is the converse true? Explain. 	[3+2]
20. Let $f: [a,b] \to \mathbb{R}$ be bounded on $[a,b]$ & let f be continuous on $[a,b]$ except on a subset S such that the number of limit points of S is finite. Prove that f is integrable on $[a,b]$	[5]

21. A function *f* is defined over the closed interval [1,3] as follows: $f(x)=1, 1 \le x < 2$ $=2, 2 \le x \le 3$ State with reason:

- (i) Whether $\int_{1}^{3} f(x) dx$ exists.
- (ii) Whether the known result of integral calculus $\int_{a}^{b} f(x)dx = (b-a)f(c)$ for $c \in [a,b]$ holds in this example.
- (iii) Whether the fundamental theorem of integral calculus is applicable to f(x) in [1, 3]. [1+2+2]
- 22. (a) Defining e as $\int_{1}^{e} \frac{dt}{t} = 1$ show that 2 < e < 3.
 - (b) Using Bonnet's form of 2nd Mean Value theorem of integral calculus, show that if b>a>0 then $\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \leq \frac{2}{a}.$ [3+2]

_____ × _____

23. Show that $\frac{\pi^3}{24\sqrt{2}} < \int_0^{\frac{\pi}{2}} \frac{x^2}{\sin x + \cos x} dx < \frac{\pi^3}{24}$.

[5]